Assignment

Class 12 Subject: E

Subject: Business Mathematics And Statistics

INTEGRAL CALCULUS – 1

PART - A

I. Choose the correct answer.

1.
$$\int \frac{1}{x^{x}} dx is _$$

a) $\frac{-3}{x^{x}} + C$ b) $\frac{-1}{2x^{2}} + C$ c) $\frac{-1}{3x^{2}} + C$ d) $\frac{-2}{x^{2}} + C$
2.
$$\int \frac{e^{x}}{\sqrt{1+e^{x}}} dx is _$$

a) $\frac{e^{x}}{\sqrt{1+e^{x}}} + C$ b) $2\sqrt{1+e^{x}} + C$ c) $\sqrt{1+e^{x}} + cd$) $e^{x}\sqrt{1+e^{x}} + C$
3.
$$\int e^{2x} (2x^{2} + 2x) dx _$$

a) $e^{2x}x^{2} + c$ b) $xe^{2x} + c$ c) $2x^{2}e^{2} + c$ d) $\frac{x^{x}e^{x}}{2} + c$
4.
$$\int_{0}^{1} (2x + 1) dx is _$$

a) 1 b) 2 c) 3 d) 4
5.
$$\int_{0}^{\infty} e^{-2x} dx is _$$

a) 0 b) 1 c) 2 d) $\frac{1}{2}$
6. The value of $\int_{-\pi/2}^{\pi/2} cosx dx is _$
a) 0 b) 2 c) 1 d) 4
7.
$$\int_{0}^{\pi/3} tanx dx is _$$

a) log 2 b) 0 c) $\log\sqrt{2}$ d) $2\log 2$
8.
$$[(1)is _$$

a) 0 b) 1 c) n d) n!
9.
$$\int_{0}^{\infty} x^{4}e^{-x} dx is _$$

a) 12 b) 4 c) 4! d) 64
10.
$$\int_{-1}^{1} x^{3} e^{x^{4}} dx$$
 is ______.
a) 1 b) $2 \int_{0}^{1} x^{3} e^{x^{4}} dx$ c) 0 d) $e^{x^{4}}$

PART - B

II. Answer the following questions :

11. Evaluate : $\int \frac{dx}{(2x+3)^2}$ 12. Evaluate: $\int \frac{3x^2+2x+1}{x} dx$ 13. Evaluate: $\int \cos^3 x \, dx$ 14. Evaluate: $\int_0^{\pi/2} \cos^2 x \, dx$ 15. Evaluate: $\int_0^{\infty} e^{-2x} x^5 \, dx$ 16. Evaluate: $\int_0^{\infty} e^{-x/2} \, dx$ 17. Evaluate: $\int_0^{\infty} e^{-x/2} \, dx$ 18. Evaluate: $\int \frac{dx}{\sqrt{x^2+25}}$ 19. Evaluate: $\int \frac{e^x+7}{e^x} \, dx$ 20. Evaluate: $\left[\left(\frac{7}{2} \right) \right]$

PART - C

III. Answer the following questions :

21. Evaluate: $\int_{-1}^{1} (x^{2} + x) dx$ 22. Evaluate: $\int_{a}^{b} \frac{\sqrt{\log x}}{x} dx \quad a, b > 0$ 23. Evaluate: $\int x^{3} e^{x^{2}} dx$ 24. Evaluate: $\int x \log x dx$ 25. Evaluate: $\int 3^{2x+3} dx$

PART - D

IV Answer the following questions :

26. Evaluate : $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$

Unit – 3 Integral Calculus - II

I. Choose the correct answer :

9.

1. Area bounded by the curve y = x(4-x) between the limits 0 and 4 with x axis.

	a) $\frac{30}{3}$ sq.units		b) $\frac{31}{2}$ sq.units	
	c) $\frac{32}{3}$ sq.units		d) $\frac{15}{2}$ sq.units	
2.	Area bounded by the curve $y = \frac{1}{x}$ between the limits 1 and 2 is			
	a) log 2 sq.units		b) log 5 sq.units	8
	c) log 3 sq.units		d) log 4 sq.units	8
3.	If MR and MC de	notes the marg	inal revenue and mar	ginal cost
	functions, then the profit function is			
	a) $P = \int (MR - MC)$)dx + K b	$P = \int (MR + MC) dx + K$	[
	c) $P = \int (MR) (MC)$)dx + K d	$P = \int (R - C) dx + K$	
4.	4. The demand and supply functions are given by $D(x) = 16 - x^2$ and S			
$2x^{2}+4$ are under perfect competition, then the equilibrium price x				rium price x is
	a) 2	b) 3	c) 4	d) 5
5.	If the marginal re	venue = 35+7x	x- 3x ² then the averag	e revenue AR is
	a) $35x + \frac{7x^2}{2} - x^3$		b) $35 + \frac{7x}{2} - x^2$	
	c) $35 + \frac{7x}{2} + x^2$		d) $35 + 7x + x^2$	
6. The profit of a functionP(x) is maximum when				
	a) MC- MR = 0	b) MC = 0	c) MR = 0	d) MC+ MR = 0
7. When $x_0 = 2$ and $P_0 = 12$ the producers surplus for the supply				
	function $P_s = 2x^2$	+4 is		
	a) <u>31</u> units	b) $\frac{31}{2}$ units	c) $\frac{32}{3}$ units	d) $\frac{30}{7}$ units
8	. The demand and	d supply functi	on of a commodity ar	$e P(x) = (x-5)^2$ and
$S(x) = x^2+x+3$ then the equilibrium quantity X_0 is				
	a) 5	b) 2	c) 3	d) 19
For a demand function P, if $\int \frac{dP}{P} = K \int \frac{dx}{x} = K \int \frac{dx}{x}$ then K is equal to				
	a) η _d	b) – η _d	c) $-\frac{1}{\eta_d}$	d) $\frac{1}{\eta_d}$
10. Area bounded by $y = IxI$ between the limits 0 and 2 is				
	a) 1 sq.units	b) 3sq.units	c) 2 sq.units	d) 4 sq.units

II. Answer the following questions :

- 11. The price of a machine is ₹6,40,000 if the rate of cost saving is represented by the function f(t) = 20000 t. Find out the number of years required to recoup the cost of the function.
- 12.The marginal revenue function (in thousand of rupees) of a commodity is $10 + e^{-0.05x}$ where x is the number of units sold. Find the total revenue from the sale of 100 units.[e⁻⁵ = 0.0067]
- 13.Mr.Arul invests Rs.10000 in ABC Bank each year, which pays an interest of 10% Per annum compounded continuously for 5 years. Howmuch amount will there be after 5 years.[e^{0.5} = 1.6487]
- 14.Find the area bounded by y = 4x+3 with x axis between the lines x = 1 and x = 4.
- 15.Find the area bounded by the line y = x the x axis and the ordinates x = 1, x = 4.
- 16.A company has determined that the marginal cost function for a product of a particular commodity is given by MC = $125 + 10x \frac{x^2}{9}$ where C rupees is the cost of producing x units of the commodity. If

the fixed cost is Rs.250/- What is the cost of product.

- 17.The rate of new product is given by $f(x) = 100 90e^{-x}$ where x is the number of days the product is on the market. Find the total sale during the first four days [e⁻⁴ = 0.018]
- 18.In year 2000 world gold production was 2547 metric tons and it was growing exponentially at the rate of 0.6% per year. If the growth continues at this rate, howmany tons of gold will be produced from 2000 to 2013? [$e^{0.078} = 1.0811$]
- 19.If MR = $14-6x+9x^2$, find the demand function.
- 20.If MR = $20-5x+3x^2$, find the total revenue function.

III. Answer the following questions :

- 21.The marginal cost function $MC = 2+5e^x$ (i) Find C, if C(0) = 100 (ii) Find AC
- 22.Find marginal revenue functionMR = $35+7x-3x^2$, Find the revenue function and demand function.
- 23. The demand function of a commodity is y = 36-x². Find the consumer's surplus for $y_0 = 11$
- 24.Find the area of parabola $y^2 = 8x$ bounded by its latus rectum.
- 25.If themarginal revenue function $R^1(x) = 1500-4x-3x^2$ Find the revenue function and average revenue function.

Part D

III. Answer the following question:

26. Under perfect competition for a commodity the demand and supply laws are $P_d = \frac{8}{x+1} - 2$ and $P_s = \frac{x+3}{2}$ respectively. Find the consumer's and producer's surplus.