Assignment

Class-12

Subject:Mathematics

Unit 2 Complex Numbers Part - A

I. One mark questions Fill in the blanks:

1. $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is

2. The conjugate of a complex number is $\frac{1}{i-2}$ then, the complex number is

3. If $z = \frac{(\sqrt{3+i})^8 (3i+4)^2}{(8+6i)^2}$, then |z| is equal to _____ 4. If $|z - 2 + i| \le 2$, then the greatest value of |z| is _____ 5. If |z| = 1, then the value of $\frac{1+z}{1+z}$ is _____

Choose the best answers:

6. If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$, then the value of $|z_1 + z_2 + z_3|$ is (i) 1 (ii) 2 (iii) 3 (iv) 4 7. z_1, z_3 and z_3 are complex numbers such that $z_1 + z_2 + z_3 = 0$ and $|z_1| = |z_2| = |z_3| = 1$ then $z_1^2 + z_2^2 + z_3^2$ is (iii) 1 (iv) 0 (ii) 2 8. If z = x + iy is a complex number such that |z + 2| = |z - 2|, then the locus of z is (ii) imaginary axis (iii) ellipse (i) real axis (iv) circle 9. The principle of argument of $\frac{3}{-1+i}$ is (i) $\frac{-5\pi}{6}$ (ii) $\frac{-2\pi}{3}$ (iii) $\frac{-3\pi}{4}$ (iv) 10. If α and β are the roots of $x^2 + x + 1 = 0$ then $\alpha^{2020} + \beta^{2020}$ is (iv) $\frac{-\pi}{2}$ (ii) -1 (iii) 1 (i) -2 (iv) 2

Part – B

II.Very Short Answer.

1. Simplify the following $i^{59} + \frac{1}{i^{59}}$

- 2. Write $\frac{3+4i}{5-12i}$ in the x + iy form, hence find its real and imaginary parts
- 3. If |z| = 3, show that $7 \le |z + 6 8i| \le 13$
- 4. Find the square root of 6 8i
- 5. Simplify $\left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right)^{18}$

Part - C

III. Short Answer.

1. Simplify $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$ into rectangular form 2. Show that the equation $z^3 + 2\overline{z} = 0$ has five solutions 3. If z = x + iy is a complex number such that $\left|\frac{z-4i}{z+4i}\right| = 1$ show that the locus number of z is real axis 4. Write in polar form: -2 - i25. If $\omega \neq 1$ is a cube root of unity, show that $(1 - \omega + \omega^2)^6 + (1 + \omega - \omega^2)^6 = 128$

Part – D

IV.Write in detail.

1. If z = x + iy is a complex number such that $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = 0$, show that the locus of z is $2x^2 + 2y^2 + x - 2y = 0$ 2. If z = x + iy and $\arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x - 3y + 2 = 0$

Unit – 3 - Theory of Equations

Part - A

I. One mark questions

1.A zero of $x^2 + 64$ is _____

2. If f and g are polynomials of degrees m and n respectively, and if

 $h(x) = (f \circ g)(x)$, then the degree of h is _____

3. A polynomial equation in x of degree n always has _____

4. If α , β and γ are the zeroes of $x^2 + px^2 + qx + r$, then $\sum_{\alpha} \frac{1}{\alpha}$ is _____

5. According to the rational root theorem, which number is not possible rational zero of $4x^7 + 2x^4 - 10x^3 - 5$

- 6. The polynomial $x^3 kx^2 + 9x$ has three real zero if and only if, k satisfies
 - (ii) $|k| \le 6$ (ii) k = 0 (iii) |k| > 6 (iv) $|k| \ge 6$

7. The number of real number in $(0,2\pi)$ satisfying $\sin^4 x - 2 \sin^2 x + 1$ is

(i) 2 (ii) 4 (iii) 1 (iv) ∞

8. If $x^2 + 12x^2 + 10ax + 1999$ definitely has a positive zero, if and only if

(i) $a \ge 0$ (ii) a > 0 (iii) a < 0 (iv) $a \le 0$

9. The polynomial $x^3 + 2x + 3$ has

- (i) one negative and two imaginary zeroes
- (ii) one positive and two imaginary zeroes
- (iii) three real zeroes
- (iv) no zeroes

10. The number of positive zeroes of the polynomial $\sum_{i=0}^{n} {}^{n}C_{r}(-1)^{r}x^{r}$ is

(i) 0 (ii) n (iii) < n (iv) r

Part - B

II. Very short answer

1. Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{3}}}$ as a root 2. If α, β and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients.

3. Find a polynomial equation of minimum degree with rational coefficients, having $2 - \sqrt{3}$ as a root.

4. Find a polynomial equation of minimum degree with rational coefficients, having 2i + 3 as a root.

5. Show the equation $2x^2 - 6x + 7 = 0$ cannot be satisfied by any real values of *x*.

Part - C

III. Short answer

1. If *p* and *q* are the roots of the equation $lx^2 + nx + n = 0$, show that

 $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{1}} = 0$

- 2. Find the roots of $2x^2 + 3x^2 + 2x + 3 = 0$
- 3. Find all real numbers satisfying $4^x 3(2^{x+2}) + 2^5 = 0$

4. If α , β and γ are the roots of the polynomial equation $ax^3 + bx^2 + cx + d = 0$, find the value of $\sum \frac{\alpha}{\beta \gamma}$ in terms of the coefficients.

5. Solve the cubic equations: (i) $2x^3 - 9x^2 + 10X = 3$ (ii) $8x^3 - 2x^2 - 7x + 3 = 0$

Part - D

IV. Answer in Detail

1. If 2 + i and $3, \sqrt{2}$ are roots of the equation $x^{6} - 1x^{5} + 62x^{4} - 126x^{3} + 65x^{2} + 127x - 140 = 0$, find all roots 2. Solve the equation $6x^{4} - 5x^{3} - 38x^{2} - 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.